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ABSTRACT

In recent years, sensor network system has been proposed
for various applications. In the past, most reported systems
involve custom-made hardware. In this paper, we consider
the use of Compaq iPAQ 3760s with their build-in Stron-
gARM processors, ROM and RAM memories, and micro-
phones and codecs for acoustic acquisition and processing,
plus external wireless Ethernet cards for radio communica-
tion to form a distributed sensor network to perform acous-
tical beamforming. Time synchronization among the mi-
crophones is achieved by the Reference-Broadcast Synchro-
nization method of Elson-Estrin. Two beamforming algo-
rithms, based on the time difference of arrivals (TDOAs)
among the microphones and least-squares estimation of the
TDOAs method, and the maximum-likelihood (ML) param-
eter estimation method, are used to perform source detec-
tion, enhancement, localization, delay-steered beamform-
ing, and direction-of-arrival estimation. Theoretical Cramér-
Rao bound analysis of the system performance and experi-
mental beamforming results using the iPAQs and the wire-
less network are reported.

1. INTRODUCTION

Recent developments in integrated circuit technology have
allowed the construction of low-cost small sensor nodes with
signal processing and wireless communication capabilities
that can form distributed wireless sensor network systems.
These systems can be used in diverse military, industrial,
scientific, office, and home applications [1]-[2]. In this pa-
per, we propose to perform beamforming based on coher-
ent processing of acoustical waveforms collected from the
sensor nodes for detection, localization, tracking, identi-
fication, and signal-to-noise-ratio (SNR) enhancement of
acoustical sources, counting the number of such sources,
and estimation of the impulse responses of the acoustical
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channels. In order to perform coherent processing of these
waveforms, the signals collected from the nodes must be
time-synchronized with respect to each other.

In the past, most reported systems performing these beam-
forming operations involved custom-made hardware. In the
paper, we propose to use Compaq iPAQ 3760s, which are
handheld, battery-powered devices normally meant to be
used as PDAs. We selected the iPAQ because it is small,
has reasonable battery life, supports Linux OS, and is read-
ily available commercial-off-the-shelf (COTS). Each has a
built-in microphone and codec capable of sampling rate from
8 kHz to 48 kHz for acoustical acquisition. It can also sup-
port an 11 MBit/s spread-spectrum wireless Ethernet card
for wireless communication. Synchronization among the
iPAQ’s CPU clocks is achieved using Reference-Broadcast
Synchronization (RBS), described by Elson et al in [8].

Two of our previously proposed and verified beamform-
ing algorithms [4]-[6] can be implemented on the iPAQ based
sensor network. The first class of beamforming algorithms
exploits the time difference of arrivals (TDOAs) among the
sensors. A blind beamforming method uses the maximum
power criterion to obtain array weights from the dominant
singular vector or eigenvector associated with the largest
singular value or eigenvalue of the space-time sample data
or correlation matrix. This approach not only collects the
maximum power of the dominant source, but also provides
some rejection of other interferences and noises. The rela-
tive phase information among the weights yields the relative
propagation time delays from the dominant source to the
sensors. Various forms of least-squares estimation meth-
ods are applied to these TDOAs to perform source detec-
tion, enhancement, localization, and delay-steered beam-
forming. The second class of beamforming algorithms uses
maximum-likelihood (ML) parameter estimation method to
perform source localization for near-field scenarios and di-
rection of arrival (DOA) of the sources for far-field scenar-
ios. Several sub-arrays yielding cross bearing DOAs can
also be used to perform accurate source localization.

We compare the operations of these blind beamforming



algorithms on the wireless sensor network. Complexity and
performance of these algorithms vary greatly depending on
the algorithms, type of sources, the geometric relationships
among the sources and the sensor nodes, the signal strengths
of the sources, and other system parameters. These sys-
tem parameters include the time-synchronization errors in
the sensor nodes, sampling rate of the iPAQ, etc. We will
also compare the experimentally measured results with ana-
lytically derived Craḿer-Rao Bounds (CRB) characterizing
theoretical optimum performance as functions of SNR, time
synchronization errors, and sensor node geometry. Our goal
is to make the network self organize and dynamically con-
figure the needed sensor nodes to perform complex beam-
forming operations for various applications of interest.

2. TEST BED DESCRIPTION

The test bed is a wireless sensor network that acquires acous-
tic signals from a target for beamforming. In this paper, we
intentionally process data offline in order to study the ef-
fects of source bandwidth, ambient noise and array configu-
ration on the performance of our beamforming algorithms;
but real-time operation is of eventual interest.

2.1. Hardware Platform Description

We selecteded COMPAQ iPAQ H3760 Pocket PC as the test
bed node because it has integrated senseing, processing and
communication capabilities. It has a built-in microphone for
recording acoustic signals. Its codec supports a sampling
rate ranging from 8 kHz to 48 kHz and a sample format of
signed 16-bit integer. Its 206 MHz StrongARM-1110 CPU,
32 MB ROM and 64 MB RAM provide reasonable com-
putational resource for digital signal processing. We also
equipped each node with an 11-Mbps ORiNOCO Silver PC
Card that implements IEEE 802.11b. High bandwidth com-
munication capability is essential to coherent signal pro-
cessing such as beamforming. In addition, we chose Linux
operating system [7] for the test bed node because the open
source nature makes it convenient for development.

2.2. Time Synchronization

Beamforming requires synchronized sensor nodes. In the
test bed, fine-grained time synchronization is realized by
an implementation of Reference Broadcast Synchronization
(RBS), described in more detail in [8]. Briefly, RBS syn-
chronizes a set of receivers of reference broadcast with one
another, in contrast to traditional time synchronization pro-
tocol in which a receiver synchronizes with a sender. RBS
achieves significantly better precision than traditional syn-
chronization protocol because the nondeterministic round-
trip delay is removed from the critical path.

On each node in the test bed, there is a RBS daemon
acting as both a sender and a receiver. Periodically, each
RBS daemon broadcasts a reference packet with a sequence
number, ID . It also listens for arrival of such reference
packets from other RBS daemons. Whenever a RBS dae-
mon receives a reference packet, it reports the arrival time-
stamp along with its ID back to the reference packet sender.
The reference packet sender collects all reception reports
and computes clock conversion parameters between each
pair of nodes that heard its broadcast. These parameters are
then broadcast back to reference packet receivers. The RBS
daemon receives these parameters make them available to
users by providing a library function that converts UNIX
“timevals” from one node to another. In practice, iPAQ-
to-iPAQ time synchronization via 802.11b has an error of
about 1.5µs, which is much less than a sample interval at
48 kHz sampling rate.

2.3. Data Collection

In the testbed, nodes are organized into clusters. The cluster
head commands other nodes to collect the same number of
acoustic data samples starting from the same time. How-
ever, the low-cost consumer-grade audio codecs on iPAQ
3760s cause two difficulties. First, those codecs have large
nondeterministic latency when they are requested to start
recording. Simply starting recording at the same time on
all sensor nodes does not get audio data starting from the
same time even if all sensor nodes’s CPU are perfectly syn-
chronized. Second, those codecs sample acoustic signals at
slightly different rates across different nodes although they
are set to the same sampling rate. As a result, audio data
time series from different sensor nodes may have different
duration even if they have the same number of samples and
use the same sampling rate parameter.

We avoid the first problem by using “audio server” [9].
The audio server is a demon that runs the audio codec con-
tinuously for recording, time-stamps and buffers the most
recent 10 s of audio data, and makes it available to user ap-
plications through a library function. The cluster head picks
a recent local time-stamp, converts it to each sensor node’s
local time-stamp, and then send each sensor node an audio
data request along with the specified sample numbers and
the specified starting time in term of the sensor node’s local
time. The sensor node just grabs from audio server the spec-
ified number of audio data samples starting from the speci-
fied local time, then sends them back to the cluster head. In
this way, the cluster head collects from all sensor nodes the
same number of audio data samples starting from the same
time.

In order to overcome the second difficulty, the real du-
ration of audio data samples on each sensor node is mea-
sured and used as input to beamforming algorithms for ad-
justments. With the help of audio server, it is straightfor-



ward to measure the real duration of audio data samples by
checking the timestamps of the first and last samples in the
audio data time series. Fig. 1 shows the difference between
measured sampling durations and requested sampling du-
rations on a set of nodes when they are asked for 240,000
samples at 48 kHz sampling rate. We conducted 16 trial
runs to obtain the figure. The difference could be up to 300
µs for a 5 s of requested sampling duration. Assuming a
sound speed of 340 m/s, 300µs time difference will lead
to about 10 cm distance difference. The request and data

Figure 1. Measured/Requested sample duration difference

transfer between cluster head and sensor nodes are realized
by a client-server model. Each sensor node is configured as
a server that is waiting for requests from the cluster head
and returning requested audio data to the cluster head upon
request. The cluster head creats one client thread for each
sensor node requested for audio data. All client threads run
concurrently on the cluster head, thus the reqest and data
transfer between the cluster head and each sensor node pro-
ceeds concurrently and independently. Concurrency among
client threads on the cluster head improves efficiency.

3. BEAMFORMING METHOD FOR SOURCE
LOCALIZATION AND DOA ESTIMATION

3.1. TDOA-CLS method

The first beamforming method involves a relative time de-
lay estimation step then followed by a least square (LS) fit
to the source location in the near-field case or the source
DOA in the far-field case. The TDOA can be estimated by
using the conventional correlation operation among sensors
or a blind beamforming method proposed in [4]. Without a
loss of generality, we choosep = 1 as the reference sensor
for differential time-delays. Let the reference sensor be the

origin of the coordinate system for simplicity. The TDOA
for P sensors satisfies:

tp1 = tp − t1 =
‖rs − rp‖ − ‖rs − rp‖

v
, (1)

for p = 2, ..., P , wherers = [xs, ys]T andrp = [xp, yp]T

are the source location(s) andpth sensor location respec-
tively in a 2-D Cartesian coordinate system, andv is the
speed of propagation. This is a set ofP − 1 nonlinear equa-
tions, which can be formulated as the least squares solutions
of the followingP − 1 linear equations [5]:

Ay = b + v2c, (2)

whereA =



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The constraint of the above equations is:

v2‖By‖ = ‖fT y‖, (3)

whereB =




1 0 0
0 1 0
0 0 0


, andf =

[
0 0 1

]T
.

Defineg = b+ v2c, the constrained least square (CLS)
solution can be obtained by Lagrangian multiplier method.
The solution of the unknown vectory can be given by:

y = (AT A + λv2B− λffT )−1AT g. (4)

The Lagrangian multiplierλ can be obtained by substituting
eq. (4) back to eq. (3). The resulting equation is a fourth
order equation. We then select the root which gives estimate
the most physical meaning.

When the source is at the far-field, the CLS solution can
be derived from the following differential time delay rela-
tionship:

vtp1 = rp(cos θs cos θp + sin θs sin θp), (5)

for p = 2, ..., P , whererp andθp is the distance and an-
gle between thepth sensor and the reference sensor respec-
tively. The aboveP − 1 equations can be formatted in the
following matrix form:

Ax = b, (6)

whereA =




r2 cos θ2 r2 sin θ2

r3 cos θ3 r3 sin θ3

...
...

rP cos θP rP sin θP


, x =

[
cos θs

sin θs

]
,



b =




vt21
vt31

...
vtP1


.

This is a constrained least square problem with the con-
straint ‖x‖ = 1. The solution can be obtained by La-
grangian multiplier method. We define the function to be
minimized as:

J(λ) = (Ax− b)T (Ax− b) + λ(‖x‖ − 1). (7)

Setting the derivative of the above function to zero, we can
obtain the solution ofx:

x = (AT A + λI)−1AT b, (8)

We use eq. (8) with the constraint‖x‖ = 1 to solve forλ,
this yields a fourth order equation, which has at most four
solutions. The solution corresponding to the more “physi-
cal” estimate that fits the data will be used.

3.2. Maximum-likelihood source localization and DOA
estimation

In contrast to the TDOA-LS method, where the data is pro-
cessed in the time domain, the approximated Maximum Like-
lihood (AML) estimator does the processing in the frequency
domain. Due to the broadband nature of the signal, the ML
metric results in a coherent combination of each subband.
In the signal model, the sensors are assumed to be omni-
directional. For simplicity, we assume both the source and
sensors lie in the same plane (a 2-D scenario). For a ran-
domly distributed array ofP sensors, the data collected by
thepth sensor at timen is given by:

xp(n) = apso(n− tp) + wp(n), (9)

for n = 0, ..., N − 1, p = 1, ..., P , whereap is the signal
gain level of the source at thepth sensor,so is the source
signal,tp is the time-delay in samples (which is allowed to
be any real-valued number), andwp is the zero mean white
Gaussian noise with varianceσ2. The time-delay is defined
by tp = ‖rs − rp‖/v. The received wideband signal can
be transformed into the frequency domain via DFT. Note
the DFT creates a circular time-shift rather than the actual
time-shift. Severe edge effect results from small data length
N but it becomes a good approximation for largeN . In the
subsequent sections, we assumeN is large enough and thus
the noise is almost uncorrelated across the frequencies. In
the subsequent sections, we denoteH as the complex con-
jugate transpose. The array signal model in the frequency
domain is given by:

X(k) = d(k)So(k) + η(k), (10)

for k = 0, ..., N/2, where the array data spectrum is given
byX(k) = [X1(k), ..., XP (k)]T , the steering vector is given
by d(k) = [d1(k), ..., dP (k)]T , dp(k) = e−j2πktp/N , and
So(k) is the source spectrum. The noise spectrum vector
η(k) is zero mean complex white Gaussian distributed with
varianceNσ2. The ML solution of the above signal model
can be shown to maximize the following function [6]:

max
r̃s

J(r̃s) = max
r̃s

N/2∑

k=0

‖B(k, r̃s)‖2, (11)

whereB(k, r̃s) = d̄(k, rs)HX(k), d̄ = d/
√∑P

p=1 a2
p is

the normalized steering vector.
Similarly, in the far-field case, the unknown parameter

vector contains only DOAs. The relative time delay from
pth sensor to the reference sensor is given by eq. (5). Thus,
the AML DOA estimation can be obtained by
arg maxθs

∑N/2
k=0 ‖B(k, θs)‖2.

4. CRB ANALYSIS OF THE TIME
SYNCHRONIZATION ERROR FOR DOA

ESTIMATION

4.1. CRB derivation for time synchronization error

In this subsection, we evaluate the theoretical performance
of DOA estimation for the far-field case by CBR analysis.
CBR can provide a theoretical lower bound for any unbi-
ased estimator. However, unbiased estimator is generally
difficult to obtain in practice. Some estimators, such as ML,
can be shown to asymptotically approach CRB when SNR
and data length are large. From the data model of the far-
field DOA case, when only the time synchronization error is
considered, the received waveform of thepth sensor at the
k frequency bin is given by:

xpk = sk exp
[−j2πk(tp − τp)

N

]
, (12)

wheresk is the received signal spectrum at the reference
sensor,tp is the relative time delay from thepth sensor to the

reference sensor. For the far-field case,tp = rp cos(θs−θp)
v .

τp is the time synchronization error and assumed to be IID
white Gaussian with zero mean and varianceσ2

r .
Taking ln of both sides of eq. (12), and rearranging terms,
we obtain:

zpk = fk − rp cos(θs − θp)
v

+ τp, (13)

for k = 1, . . . ,K andp = 1, . . . , P , where
zpk = N

2πk={ln(xpk)}, fk = N
2πk={ln(sk)}, and={} rep-

resents the imaginary part of a complex value. At the fre-
quency bink, the P equations are stacked up to form a



complete matrix. We have the following real-valued white
Gaussian data model:

X = G(Θ) + τ (14)

whereΘ is the unknown parameter that we need to esti-
mate,Θ = [θs, fk] in our case, i.e., the source angle and the
source spectrum,τ = [τ1 . . . τP ]T and

G(Θ) = fk[1 . . . 1]T −
[

r1 cos(θs−θ1)
v . . . rP cos(θs−θP )

v

]T

.

The CRB for the white Gaussian data model can be
given by the inverse of the Fisher information matrix, which
is:

F =
1
σ2

τ

[HT H], (15)

whereH = ∂G(Θ)
∂Θ . It can be shown that:

∂G(Θ)
∂Θ

=




r1 sin(θs−θ1)
v 1
...

...
rP sin(θs−θP )

v 1


 . (16)

Substitute eq. (16) to eq. (15), we have:

F =
1
σ2

τ

[ ∑P
p=1

r2
p sin2(θs−θp)

v2

∑P
p=1

rp sin(θs−θp)
v∑P

p=1
rp sin(θs−θp)

v P

]
.

(17)
The CRB for the source angle can then be given by the

first diagonal element of the inverse of the Fisher informa-
tion matrix, which is given by:

CRB =
σ2

τ

∑P
p=1

r2
p sin2(θs−θp)

v2 − 1
P

(∑P
p=1

rp sin(θs−θp)
v

)2 .

(18)
Some observation can be made from the CRB formula (eq.
(18)). First, the numerator of the CRB only depends on
the variance of the time-synchronization error; while the de-
nominator of the CRB depends on the array geometry and
source angle. Therefore, the CRB is proportional to the time
synchronization error. Furthermore, the array geometry also
has effect on the CRB. Poor array geometry may lead to a
smaller denominator, which results in a larger estimation
variance. It is interesting to note that the geometric factor
is the same as the CRB formula for additive Gaussian noise
at [6], which means the array geometry produces the same
effects on both kinds of errors.

Second, although the derivation is limited to one fre-
quency bin, the resulting CRB formula is independent of
that particular frequency bin. Therefore, unlike the CRB
of AWGN, the CRB can not be reduced by increasing the
number of frequency bins. In other words, the time syn-
chronization error can not be reduced by increasing the data
length of the received signal.

4.2. Variance lower bound for time synchronization er-
ror and AWGN

By considering time synchronization error and AWGN to-
gether, the received signal spectrum at thek frequency bin
and thepth sensor, will be:

xpk = sk exp
[−j2πk(tp − τp)

N

]
+ ηpk, (19)

where the first term is the same as eq. (12),ηpk is the com-
plex white Gaussian with zero mean andNσ2

n is the vari-
ance. Exact CRB requires the derivation of the probability
density function (pdf) of the above data model, which may
be a formidable task.

Here, we provide a variance bound based on the in-
dependence assumption ofτp and ηpk. With this condi-
tion, the variance of the estimator will be the sum of the
variance induced by these errors independently. By using
var(θ; τ, η) = var(θ; τ) + var(θ; η), CRB(θ; τ) ≤ var(θ; τ)
and CRB(θ; η) ≤ var(θ; η), we obtain:

var(θ; τ, η) ≤ CRB(θ; τ) + CRB(θ; η). (20)

The CRB induced by AWGN is given by:

CRB =
1

ς

[∑P
p=1

r2
p sin2(θs−θp)

v2 − 1
P

(∑P
p=1

rp sin(θs−θp)
v

)2
] ,

(21)

where ς = 2
Nσ2V 2

∑N/2
k=1

(
2πkS(k)

N

)2

and the geometric

factor is the same as the time synchronization error. Al-
though the variance bound may not be as tight as the CRB,
it can be shown to match well with the root-mean-square
(RMS) error of the simulation of AML algorithm. Further-
more, it offers a much simpler and more efficient way to
evaluate the variance lower bound.

5. SIMULATION EXAMPLES AND
EXPERIMENTAL RESULTS

5.1. Simulation examples of time synchronization error

In this subsection, we compare the derived variance bound
of the DOA estimation with the RMS error of AML in sev-
eral simulations. Assume a far-field source impinges on a
sensor array at45◦. The sensor array configuration is a uni-
form square with four acoustic sensors, each spacing 0.345
m apart. The source is a prerecorded vehicle signal with
significant spectral content of about 50 Hz bandwidth cen-
tered about a dominant frequency at 100 Hz. The sampling
frequency is set to 1 kHz and the speed of propagation is
345 m/s. The data lengthN ≥ 2000, which makes the edge
effect of DFT insignificant. In every simulation, the RMS
error of AML is computed via 100 Monte Carlo runs. In



the first simulation, we omit the AWGN and only consider
the time synchronization error. The data length of the re-
ceived data is set to 2000 samples. The RMS error of the
AML and the CRB computed from eq. (10) are plotted as
a function of the variance of the time synchronization error
σ2

t in fig. 2. The figure shows that the CRB provides a tight

Figure 2. RMS error comparison of CRB and AML as a
function ofσ2

t .

lower bound for the RMS error of the AML algorithm. Fur-
thermore, the CRB is proportional to theσ2

t . In the second
simulation, we setσ2

t = 0.001 and varyN from 2000 to
4500 to perform AML DOA estimation. CRB analysis sug-
gests that the performance of AML can not be improved by
increasing the data length for fixedσ2

t , which can be veri-
fied by the RMS error comparison between CRB and AML
DOA estimation shown in fig. 3. In the third simulation, we
consider the combined effect of time synchronization error
and AWGN. The RMS error of AML and the derived vari-
ance bound are plotted as a function of SNR for variousσ2

t .
It can be seen that the performance of AML matches well
with the variance bound. Furthermore, the performance of
AML is limited even at high SNR region for fixσ2

t at fig.
4. This is due to the time synchronization error becoming
dominant at that region, which results in a error floor ef-
fect. The above theoretical as well as simulation analysis
of the time synchronization error shows that it is crucial to
obtain accurate time synchronization among sensors in or-
der to yield a good performance of the coherent array signal
processing.

5.2. Results of outdoor experiment

We conducted several outdoor experiment with different
sources as well as different array configurations to demon-
strate the effectiveness of the proposed wireless time syn-

Figure 3. RMS error comparison of CRB and AML as a
function of data length

Figure 4. RMS error comparison of variance bound and
AML

chronized COTS sensor network for beamforming applica-
tions. We consider two scenarios: direct source localization
for near-field and DOA estimation of the source for far-field.
In the near-field case, we assume high coherency of the re-
ceived signal at all sensors and apply either TDOA-CLS or
AML source localization to find the source location. In the
far-field case, we perform TDOA-CLS or AML DOA es-
timation to find source DOA at each subarray. Source lo-
cation can then be estimated by crossing bearings obtained
from these subarrays. Our experimental setup for the near-
field source localization scenario is shown in fig. 5. The
source is placed in the middle of a square sensor array. The
inter-sensor spacingL is 20 ft (6.1 m). The sound of a mov-
ing light wheeled vehicle is played through the speaker and
collected by the microphone array embedded in the iPAQs.
Fig. 6 shows that, with this configuration, the location of the



Figure 5. Square Configuration

Figure 6. Source localization result of a driving vehicle sig-
nal

Figure 7. Source localization result of a music signal

speaker can be estimated with a RMS error of 0.407 m using
the near-field AML source localization algorithm. A RMS
error of 0.0473 m was observed for the same data using the
two-step CLS method. We used similar configuration for
the second experiment, except the inter-sensor spacingL is
set to be 40 ft (12.2 m). The loud speaker played a prere-
corded organ music, whose spectrum has a 2 kHz bandwidth
and 1.75 kHz central frequency. For this wideband source,
the AML algorithm can estimate the source with 0.355 m
RMS error, while the RMS error by using TDOA-CLS is
0.0349 m (see fig. 7). Thus, both beamforming methods
are capable of locating the source, but TDOA-CLS gives a
better performance.

Figure 8. Array configuration 1

Figure 9. cross bearing result of a vehicle signal

We consider two different subarray configurations for
the far-field cross bearing source localization. In one con-
figuration, we used a triangular sensor array as shown at fig.
8. The cross-bearings from three widely separated subar-
rays yield the estimated source locations, S1,..,S4, in fig. 8.
The same vehicle sound was played at four different loca-



tion once at a time. The estimated results of AML as well
as TDOA-CLS are shown in fig. 9. It can be seen that more
accurate estimation can be obtained when the source is in
the middle of the subarrays. This maybe due to more co-
herent waveforms are received at all three subarrays when
the source is inside the convex hull of the sensors. Com-
parison of AML and TDOA-CLS can also be made. Unlike
the near-field case, the performances of these two methods
are similar. The RMS errors of 0.638 m at location S4 and
0.225 m at location S1 are reported for AML method. With
TDOA-CLS, the RMS error is 0.769 m at S4 and 0.051 m
at S1.

Figure 10. Array configuration 2

Figure 11. cross bearing result of a music signal

In the configuration of fig. 10, we use a linear subarray
with three sensors. Three bearing estimates locate six dif-
ferent locations of the source, which played the music sound
as before. The results are shown at fig. 11. Similar perfor-
mance of the bearforming methods can be observed: with
AML, an RMS error of 0.998 m is observed for the source
location S1 and an RMS error of 0.115 m is observed at lo-

cation S5. With TDOA-CLS, the RMS errors of 0.893 m
and 0.064 m are reported for locations S1 and S5 respec-
tively.

6. CONCLUSIONS

In this paper, we first describe the testbed using iPAQ 3760s
to perform time synchronization and data collection. Then
we describe two beaforming methods for source localiza-
tion and DOA estimations and associated CRB analysis.
Some simulation and experimental results, illustrating the
usefulness of this sensor network system, are reported.
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